Name (IN CAPITALS): Version~#1

Instructor: Dora The Explorer

Math 10560 Exam 1 Feb. 18, 2025.

- The Honor Code is in effect for this examination. All work is to be your own.
- Please turn off (and Put Away) all cellphones, smartwatches and electronic devices.
- Calculators are **not** allowed.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name and your instructor's name are on the front page of your exam.
- Be sure that you have all 13 pages of the test.
- Each multiple choice question is worth 7 points. Your score will be the sum of the best 10 scores on the multiple choice questions plus your score on questions 13-16.

PLE	ASE MARK	YOUR	ANSWERS WITH	AN X,	not a circle!
1	(ullet)	(b)	(c)	(d)	(e)
2_{\square}	(ullet)	(b)	(c)	(d)	(e)
3.	(•)	(b)	(c)	(d)	(e)
4.	(ullet)	(b)	(c)	(d)	(e)
5.	······································	(b)	(c)	(d)	(e)
6.	(ullet)	(b)	(c)	(d)	(e)
7.	(●)	(b)	(c)	(d)	(e)
8.	(ullet)	(b)	(c)	(d)	(e)
9.	(●)	(b)	(c)	(d)	(e)
10.	(ullet)	(b)	(c)	(d)	(e)
11.	······································	(b)	(c)	(d)	(e)
12.	(●)	(b)	(c)	(d)	(e)

Please do NOT v	vrite in this box.	
Multiple Choice		
13.		
14.		
15.		
16.		
Total _		

Name (IN CAPITALS):	
Instructor:	

Math 10560 Exam 1 Feb. 18, 2025.

- The Honor Code is in effect for this examination. All work is to be your own.
- Please turn off (and Put Away) all cellphones, smartwatches and electronic devices.
- Calculators are **not** allowed.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name and your instructor's name are on the front page of your exam.
- Be sure that you have all 13 pages of the test.
- Each multiple choice question is worth 7 points. Your score will be the sum of the best 10 scores on the multiple choice questions plus your score on questions 13-16.

PLE.	ASE MARK	YOUR	ANSWERS WIT	TH AN X, n	ot a circle!
1.	(a)	(b)	(c)	(d)	(e)
2	(a)	(b)	(c)	(d)	(e)
		······································			
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.		
Multiple Choice		
13		
14		
15		
16		
Total		

Multiple Choice

1.(7pts) The function

$$f(x) = x^3 + x + e^x + 2$$

is a one-to-one function (there is no need to check this). What is $(f^{-1})'(3)$?

Solution: (a) $\frac{1}{2}$. We know that $(f^{-1})'(3) = \frac{1}{f'[f^{-1}(3)]}$. Firstly, we need to find $f^{-1}(3)$.

Since $f(f^{-1}(3)) = 3$, we know $f^{-1}(3)^3 + f^{-1}(3) + e^{f^{-1}(3)} + 2 = 3$. Solving this equation, we see $f^{-1}(3) = 0$. Secondly, we find $f'(x) = 3x^2 + 1 + e^x$, so $f(f^{-1}(3)) = f'(0) = 2$. Substitute this back to the formula, we learn that $(f^{-1})'(3) = \frac{1}{f'[f^{-1}(3)]} = \frac{1}{2}$.

- (a) $\frac{1}{2}$
- (b) $28 + e^3$ (c) 2
- (d) $\frac{1}{28+e^3}$ (e) $\frac{1}{4+e}$

2.(7pts) Find $\frac{dy}{dx}$ if

$$y = \frac{(x^4 + 1)(x + 2)^{50}}{\sqrt{x^2 + 4}}.$$

(a)
$$\frac{(x^4+1)(x+2)^{50}}{\sqrt{x^2+4}} \left(\frac{4x^3}{x^4+1} + \frac{50}{x+2} - \frac{x}{x^2+4} \right)$$
 Take ln on both sides, we get $\ln(y) = \ln(x^4+1) + 50\ln(x+2) - \frac{1}{2}\ln(x^2+4)$. Then take

derivative on both sides, it gives $\frac{1}{y}y' = \frac{4x^3}{x^4+1} + \frac{50}{x+2} - \frac{x}{x^2+4}$. By multiplying y on both sides,

(a)
$$\frac{(x^4+1)(x+2)^{50}}{\sqrt{x^2+4}} \left(\frac{4x^3}{x^4+1} + \frac{50}{x+2} - \frac{x}{x^2+4} \right)$$

(b)
$$\frac{4x^3}{x^4+1} + \frac{50}{x+2} - \frac{x}{x^2+4}$$

(c)
$$\frac{\left(\frac{4x^3}{x^4+1}\right)\left(\frac{50}{x+2}\right)}{\frac{x}{x^2+4}}$$

(d)
$$\frac{(x^4+1)(x+2)^{50}}{\sqrt{x^2+4}} \left(\frac{4x^3}{x^4+1} + \frac{50}{x+2} + \frac{2x}{x^2+4} \right)$$

(e)
$$\left(\frac{(x^4+1)(x+2)^{50}}{\sqrt{x^2+4}}\right) \frac{\left(\frac{4x^3}{x^4+1}\right)\left(\frac{50}{x+2}\right)}{\left(\frac{x}{x^2+4}\right)}$$

3.(7pts) Evaluate the indefinite integral:

$$\int \frac{dx}{x(\ln x)^2}.$$

(a) $\frac{-1}{\ln(x)} + C$

Take $u = \ln x$ so that $du = \frac{1}{x}dx$. Hence, the indefinite integral is

$$\int \frac{dx}{x(\ln x)^2} = \int \frac{1}{u^2} du = -\frac{1}{u} + C = -\frac{1}{\ln x} + C$$

(a) $\frac{-1}{\ln(x)} + C$

(b) $\ln (x(\ln x)^2) + C$

(c) $\frac{1}{x \ln(x)} + C$

(d) $\frac{-3}{(\ln(x))^3} + C$

(e) $\ln((\ln x)^2) + C$

4.(7pts) Compute f'(x) if

$$f(x) = 3^{x^2+1}$$

(a) $2x(\ln 3)3^{x^2+1}$

Take ln on both sides, we get $\ln y = \ln 3(x^2 + 1)$, this implies $\frac{1}{y}y' = \ln 3(2x)$. Mutliplying y on both sides, we see $y' = 2x(\ln 3)3^{x^2+1}$.

- (a) $2x(\ln 3)3^{x^2+1}$
- (b) 3^{2x}

(c) $(\ln 3)3^{2x}$

- (d) $(\ln 3)3^{x^2+1}$
- (e) $(x^2+1)3^{x^2}$

5.(7pts) Solve for x in the following equation

$$\log_3(3^x + 1) - \log_3(3^x) = 2.$$

(a)
$$x = \log_3\left(\frac{1}{8}\right)$$

The equation is equivalent to $\log_3 \frac{3^x+1}{3^x} = 2$, which then becomes $\frac{3^x+1}{3^x} = 3^2$, so we further have $3^x + 1 = 3^{2+x} = 9 \times 3^x$. This implies $8 \times 3^x = 1$ and $3^x = \frac{1}{8}$. Take \log_3 on both sides, we have $x = \log_3 \left(\frac{1}{8}\right)$.

(a) $x = \log_3\left(\frac{1}{8}\right)$

(b) $x = \frac{3}{2}$

(c) $x = \frac{1}{2}$

(d) x = 2

(e) $x = \log_3(8)$

6.(7pts) Find f'(x) if

$$f(x) = \arcsin(e^{2x}).$$

(a)
$$\frac{2e^{2x}}{\sqrt{1-e^{4x}}}$$

Because $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, by chain rule, we see $(\arcsin(e^{2x}))' = \frac{1}{\sqrt{1-e^{4x}}}(e^{2x})' = \frac{2e^{2x}}{\sqrt{1-e^{4x}}}$.

(a) $\frac{2e^{2x}}{\sqrt{1-e^{4x}}}$

(b) $\frac{1}{\sqrt{1 - e^{4x}}}$

(c) $\frac{1}{1 + e^{4x}}$

(d) $\frac{2e^{2x}}{1+e^{4x}}$

(e) $\frac{e^{2x}}{\sqrt{1-e^{2x}}}$

7.(7pts) Determine the following limit:

$$\lim_{x \to \infty} \frac{(\ln x)^2}{x}$$

By L'Hôpital $\lim_{x\to\infty} \frac{(\ln x)^2}{x} = \lim_{x\to\infty} \frac{2\ln x}{x} = \lim_{x\to\infty} \frac{2}{x} = 0$.

- (a) 0

- (b) $+\infty$ (c) 1 (d) $\frac{1}{2}$ (e) $-\infty$

8.(7pts) Compute

$$\int_0^1 xe^{2x} dx.$$

Integration by parts with u = x and $v = e^{2x}/2$, we have

$$\int_0^1 xe^{2x} = \left[xe^{2x}/2\right]_0^1 - \int_0^1 (e^{2x}/2)dx = \left[xe^{2x}/2 - e^{2x}/4\right]_0^1 = \frac{e^2 + 1}{2}.$$

- (a) $\frac{e^2 + 1}{4}$ (b) $\frac{e^2}{4}$ (c) ∞ (d) -2 (e) $\frac{1}{2}$

9.(7pts) Find $\int_0^{\frac{\pi}{4}} \tan^2 x \sec^4 x \, dx$. Set $u = \tan x$, we have $du = \sec^2 x$ and

 $\int_0^{\pi/4} \tan^2 x \sec^4 x dx = \int_0^{\pi/4} \tan^2 x (1 + \tan^2 x) \sec^2 x dx = \int_0^1 u^2 (1 + u^2) du = \left[u^3 / 3 + u^5 / 5 \right]_0^1 = \frac{8}{15}.$

- (a) $\frac{8}{15}$ (b) $\frac{-2}{15}$ (c) $\frac{2}{5}$ (d) $\frac{2}{15}$ (e) 1

10.(7pts) Evaluate the limit

$$\lim_{x \to 0^+} x^x$$

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^0 = 1.$$

- (a) 1

- (b) e (c) ∞ (d) $-\infty$ (e) $\frac{1}{2}$

11.(7pts) Evaluate the following integral

$$\int \cos(5x)\cos(3x) \ dx.$$

$$\int \cos(5x)\cos(3x)dx = \frac{1}{2}\int \cos(2x) + \cos(8x)dx = \frac{\sin(2x)}{4} + \frac{\sin(8x)}{16} + C$$

(a)
$$\frac{\sin(2x)}{4} + \frac{\sin(8x)}{16} + C$$

(b)
$$\frac{\sin(2x)}{2} + \frac{\sin(8x)}{2} + C$$

(c)
$$\frac{\sin(5x)\sin(3x)}{15} + C$$

(d)
$$-\frac{\sin(2x)}{2} - \frac{\sin(8x)}{2} + C$$

(e)
$$\cos(2x) + \cos(8x) + C$$

12.(7pts) A sample of radioactive material decays to 1/2 of its original amount in one day. Assuming exponential decay, how long would it take for the sample to decay to 1/100 of its original amount?

Let m_0 be its original amount, the function of the exponential decay is given by

$$m(t) = m_0(1/2)^t$$
.

Suppose at time t_1 , we have $m(t_1) = m_0/100$, then we have

$$t_1 = \log_{1/2}(1/100) = \frac{\ln 1/100}{\ln 1/2}$$
 days.

(a)
$$\frac{\ln(1/100)}{\ln(1/2)}$$
 days

(b)
$$\frac{\ln(1/100)}{\ln(2)}$$
 days

(c)
$$ln(50)$$
 days

(d)
$$\frac{\ln(1/100)}{2}$$
 days

Partial Credit

For full credit on partial credit problems, make sure you justify your answers.

13.(10pts) Calculate the integral

$$\int \frac{dx}{\sqrt{x^2 + 9}}$$

Note: The formula sheet will help you with this problem.

Write your answer in terms of the original variable x and (if needed) replace all composite trigonometric functions (such as $\cos(\sin^{-1}(x/n))$ etc...) by algebraic combinations of x.

Let $x = 3 \tan \theta$, so that $dx = 3 \sec^2 \theta d\theta$. Then the original indefinite integral will become

$$\int \frac{dx}{\sqrt{x^2 + 9}} = \int \frac{3\sec^2 \theta}{\sqrt{9\tan^2 \theta + 9}} d\theta$$
$$= \int \frac{3\sec^2 \theta}{3\sec \theta} d\theta$$
$$= \int \sec \theta d\theta$$
$$= \ln|\sec \theta + \tan \theta| + C.$$

Since $x = 3 \tan \theta$, we have $\theta = \arctan(\frac{x}{3})$. This tells us that

$$\sec \theta = \sec(\arctan(\frac{x}{3})) = \sqrt{1 + \tan^2(\arctan(\frac{x}{3}))} = \sqrt{1 + \frac{x^2}{9}} = \frac{\sqrt{9 + x^2}}{3}.$$
$$\tan \theta = \tan(\arctan(\frac{x}{3})) = \frac{x}{3}.$$

Substitute them back to the indefinite integral we obtained, we learned that

$$\int \frac{dx}{\sqrt{x^2 + 9}} = \ln|\sec \theta + \tan \theta| + C$$
$$= \ln\left|\frac{\sqrt{9 + x^2} + x}{3}\right| + C.$$

9.

Initials:

14.(12pts) Find

$$\int \frac{2x^2 + x + 2}{x^3 + x} \, dx$$

We want to apply partial fraction decomposition. First of all, we have

$$\frac{2x^2 + x + 2}{x^3 + x} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$
$$2x^2 + x + 2 = A(x^2 + 1) + (Bx + C)x$$
$$2x^2 + x + 2 = (A + B)x^2 + Cx + A.$$

Hence, we have A=2, B=0, C=1. Now we consider the following:

$$\int \frac{2x^2 + x + 2}{x^3 + x} dx = \int \frac{2}{x} + \frac{1}{x^2 + 1} dx = 2\ln x + \arctan(x) + \text{constant}.$$

True-False.

15.(6pts) Please circle "TRUE" if you think the statement is true, and circle "FALSE" if you think the statement is False.

(a)(1 pt. No Partial credit) $\lim_{x\to\infty} \tan^{-1} x = \infty$. FALSE. The limit of $\tan^{-1} x$ is $\frac{\pi}{2}$.

TRUE FALSE

(b)(1 pt. No Partial credit) $\int \frac{1}{\sqrt{1-x^2}} = \sin^{-1} x + C$. TRUE This is the formula.

TRUE FALSE

(c))(1 pt. No Partial credit) $\frac{5}{x^2-x-6} = \frac{1}{x-3} - \frac{1}{x+2}$. TRUE $\frac{1}{x-3} - \frac{1}{x+2} = \frac{x+2-(x-3)}{(x-3)(x+2)} = \frac{5}{x^2-x-6}$.

TRUE FALSE

(d))(1 pt. No Partial credit) $\frac{d}{dx}e^{2x} = e^{2x}$. FALSE $\frac{d}{dx}e^{2x} = 2e^{2x}$.

TRUE FALSE

(e))(1 pt. No Partial credit) $\sin^{-1}(\sin x) = x$ for any real number x. FALSE the range of \sin^{-1} is $[-\pi/2, \pi/2]$, so $\sin^{-1}(\sin \pi) \neq \pi$

TRUE FALSE

(f))(1 pt. No Partial credit) $\ln\left(\frac{a}{b}\right) = \frac{\ln(a)}{\ln(b)}$ for all positive (> 0) real numbers a and b. FALSE, counterexample: $\ln(\frac{1}{2}) = -\ln 2 \neq 0 = \frac{\ln 1}{\ln 2}$.

TRUE FALSE

1.	Initials:
----	-----------

16.(2pts) You will be awarded these two points if you write your name in CAPITALS on the front page and you mark your answers on the front page with an X through your answer choice like so: (not an O around your answer choice).

The following is the list of useful trigonometric formulas:

Note: $\sin^{-1} x$ and $\arcsin(x)$ are different names for the same function and $\tan^{-1} x$ and $\arctan(x)$ are different names for the same function.

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin 2x = 2\sin x \cos x$$

$$\sin x \cos y = \frac{1}{2} \left(\sin(x - y) + \sin(x + y) \right)$$

$$\sin x \sin y = \frac{1}{2} (\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2} (\cos(x - y) + \cos(x + y))$$

$$\int \sec \theta = \ln|\sec \theta + \tan \theta| + C$$

$$\int \csc \theta = \ln|\csc \theta - \cot \theta| + C$$

$$csc \theta = \frac{1}{\sin \theta}, \quad \cot \theta = \frac{1}{\tan \theta}$$

13.	Initials:

ROUGH WORK